Unbounded analysis operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Perturbations of Unbounded Operators

This work studies the spectral properties of certain unbounded selfadjoint operators by considering positive perturbations of such operators and the unitary equivalence of the perturbed and unperturbed transformations. Conditions are obtained on the unitary operators implementing this equivalence which guarantee that the selfadjoint operators have an absolutely continuous part.

متن کامل

Unbounded operators, Friedrichs’ extension theorem

Explicit naming of the domain of an unbounded operator is often suppressed, instead writing T1 ⊂ T2 when T2 is an extension of T1, in the sense that the domain of T2 contains that of T1, and the restriction of T2 to the domain of T1 agrees with T1. An operator T ′, D′ is a sub-adjoint to an operator T,D when 〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′) For D dense, for given D′ there is at most one T...

متن کامل

On unbounded operators and applications

is a solvable linear equation in a Hilbert space H , A is a linear, closed, densely defined, unbounded operator in H , which is not boundedly invertible, so problem (1) is ill-posed. It is proved that the closure of the operator (AA + α I )−1A∗, with the domain D(A), where α > 0 is a constant, is a linear bounded everywhere defined operator with norm ≤ 1 2 √ α . This result is applied to the va...

متن کامل

Differentiable Perturbation of Unbounded Operators

If A(t) is a C1,α-curve of unbounded self-adjoint operators with compact resolvents and common domain of definition, then the eigenvalues can be parameterized C1 in t. If A is C∞ then the eigenvalues can be parameterized twice differentiable. Theorem. Let t 7→ A(t) for t ∈ R be a curve of unbounded self-adjoint operators in a Hilbert space with common domain of definition and with compact resol...

متن کامل

Exponential splitting for unbounded operators

We present a convergence analysis for exponential splitting methods applied to linear evolution equations. Our main result states that the classical order of the splitting method is retained in a setting of unbounded operators, without requiring any additional order condition. This is achieved by basing the analysis on the abstract framework of (semi)groups. The convergence analysis also includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2013

ISSN: 1370-1444

DOI: 10.36045/bbms/1366306718